Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Effect Of The Fiber Orientation Relatively To The Plasma Flow Direction In The Ablation Process Of A Carbon-phenolic Composite
Author: Costa e Silva S.F.
Machado H.A.
Bittencourt E.
Abstract: Composite materials are vastly employed in rocket nozzle extensions and as thermal protection shields in aerospace industry. In both cases, ablative and thermal properties play an important role for material choice and equipment sizing. These properties are strongly dependent on the way the pieces are manufactured. For the case of nozzle extensions, wrapping is the most common technique employed, which can be done by diverse ways. In this work, samples of the carbon reinforced carbon fiber (CRCF) were extracted from pre-forms obtained by biased and parallel tape wrapping processes with a resol-type phenolic resin used as polymer matrix, in order to study the influence of the fiber angle in the ablative behavior and thermal conductivity. Experimental results for both manufacturing techniques were obtained through ablation tests carried out in a plasma torch, were compared and had the different behaviors discussed. A computational simulation based in a two-front ablation model was also performed, in order to explain the influence of thermal conductivity on the different behaviors presented for biased fiber samples. Results show that the angle of the fibers relative to the heat flux direction is an important parameter to determine the ablative properties and the thermal performance of composite wrapped structures.
Editor: Journal of Aerospace Technology and Management
Rights: aberto
Identifier DOI: 10.5028/jatm.v7i1.437
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84924760729.pdf722.57 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.