Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/85188
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.typeArtigo de periódicopt_BR
dc.titleSolid Lipid Nanoparticles As Nucleic Acid Delivery System: Properties And Molecular Mechanismspt_BR
dc.contributor.authorDe Jesus M.B.pt_BR
dc.contributor.authorZuhorn I.S.pt_BR
unicamp.authorDe Jesus, M.B., Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1Groningen, Netherlands, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas UNICAMP, Rua Monteiro Lobato no255Campinas, SP, Brazilpt_BR
unicamp.author.externalZuhorn, I.S., Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1Groningen, Netherlandspt
dc.description.abstractSolid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release.en
dc.relation.ispartofJournal of Controlled Releasept_BR
dc.publisherElsevierpt_BR
dc.date.issued2015pt_BR
dc.identifier.citationJournal Of Controlled Release. Elsevier, v. 201, n. , p. 1 - 13, 2015.pt_BR
dc.language.isoenpt_BR
dc.description.volume201pt_BR
dc.description.firstpage1pt_BR
dc.description.lastpage13pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn1683659pt_BR
dc.identifier.doi10.1016/j.jconrel.2015.01.010pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921059282&partnerID=40&md5=89cd25be8c154feba9f9b3af672313cfpt_BR
dc.date.available2015-06-25T12:50:55Z
dc.date.available2015-11-26T14:58:11Z-
dc.date.accessioned2015-06-25T12:50:55Z
dc.date.accessioned2015-11-26T14:58:11Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T12:50:55Z (GMT). No. of bitstreams: 1 2-s2.0-84921059282.pdf: 1186770 bytes, checksum: 7a5bd3fa7eed9f066062e4ea3e25da7c (MD5) Previous issue date: 2015en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:58:11Z (GMT). No. of bitstreams: 2 2-s2.0-84921059282.pdf: 1186770 bytes, checksum: 7a5bd3fa7eed9f066062e4ea3e25da7c (MD5) 2-s2.0-84921059282.pdf.txt: 92872 bytes, checksum: 2feae6f5d2791d1597f756830802365a (MD5) Previous issue date: 2015en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/85188
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85188-
dc.identifier.idScopus2-s2.0-84921059282pt_BR
dc.description.referenceSheridan, C., Gene therapy finds its niche (2011) Nat. Biotechnol., 29, pp. 121-128pt_BR
dc.description.referenceWiethoff, C.M., Middaugh, C.R., Barriers to nonviral gene delivery (2003) J. Pharm. Sci., 92, pp. 203-217pt_BR
dc.description.referenceZuhorn, I.S., Engberts, J.B.F.N., Hoekstra, D., Gene delivery by cationic lipid vectors: Overcoming cellular barriers (2007) Eur. Biophys. J., 36, pp. 349-362pt_BR
dc.description.referencePérez-Martínez, F.C., Guerra, J., Posadas, I., Ceña, V., Barriers to non-viral vector-mediated gene delivery in the nervous system (2011) Pharm. Res., 28, pp. 1843-1858pt_BR
dc.description.referenceManno, C.S., Pierce, G.F., Arruda, V.R., Glader, B., Ragni, M., Rasko, J.J., Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response (2006) Nat. Med., 12, pp. 342-347pt_BR
dc.description.referenceMingozzi, F., Meulenberg, J.J., Hui, D.J., Basner-Tschakarjan, E., Hasbrouck, N.C., Edmonson, S.A., AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells (2009) Blood, 114, pp. 2077-2086pt_BR
dc.description.referenceSadelain, M., Papapetrou, E.P., Bushman, F.D., Safe harbours for the integration of new DNA in the human genome (2012) Nat. Rev. Cancer, 12, pp. 51-58pt_BR
dc.description.referencePathak, A., Patnaik, S., Gupta, K.C., Recent trends in non-viral vector-mediated gene delivery (2009) Biotechnol. J., 4, pp. 1559-1572pt_BR
dc.description.referenceWei, J., Jones, J., Kang, J., Card, A., Krimm, M., Hancock, P., RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice (2011) Mol. Pharmacol., 79, pp. 953-963pt_BR
dc.description.referenceLobovkina, T.T., Jacobson, G.B.G., Gonzalez-Gonzalez, E.E., Hickerson, R.P.R., Leake, D.D., Kaspar, R.L.R., In vivo sustained release of siRNA from solid lipid nanoparticles (2011) ACS Nano, 5, pp. 9977-9983pt_BR
dc.description.referenceGoyal, R., Tripathi, S.K., Tyagi, S., Ravi Ram, K., Ansari, K.M., Shukla, Y., Gellan gum blended PEI nanocomposites as gene delivery agents: Evidences from in vitro and in vivo studies (2011) Eur. J. Pharm. Biopharm., 79, pp. 3-14pt_BR
dc.description.referenceMcLachlan, G., Davidson, H., Holder, E., Davies, L.A., Pringle, I.A., Sumner-Jones, S.G., Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung (2011) Gene Ther., 18, pp. 996-1005pt_BR
dc.description.referenceGinn, S.L., Alexander, I.E., Edelstein, M.L., Abedi, M.R., Wixon, J., Gene therapy clinical trials worldwide to 2012 - An update (2013) J. Gene Med., 15, pp. 65-77pt_BR
dc.description.referenceRehman, Z.U., Zuhorn, I.S., Hoekstra, D., How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances (2013) J. Control. Release, 166, pp. 46-56pt_BR
dc.description.referenceHope, M.J., Enhancing siRNA delivery by employing lipid nanoparticles (2014) Ther. Deliv., 5, pp. 663-673pt_BR
dc.description.referenceViola, J.R., El Andaloussi, S., Oprea, I.I., Smith, C.I.E., Non-viral nanovectors for gene delivery: Factors that govern successful therapeutics (2010) Expert Opin. Drug Deliv., 7, pp. 721-735pt_BR
dc.description.referenceGuo, X., Huang, L., Recent advances in nonviral vectors for gene delivery (2012) Acc. Chem. Res., 45, pp. 971-979pt_BR
dc.description.referenceCui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., Pan, Y., Strategies of large scale synthesis of monodisperse nanoparticles (2009) Recent Pat. Nanotechnol., 3, pp. 32-41pt_BR
dc.description.referenceKim, J., Hwang, I., Britain, D., Chung, T.D., Sun, Y., Kim, D.-H., Microfluidic approaches for gene delivery and gene therapy (2011) Lab Chip, 11, pp. 3941-3948pt_BR
dc.description.referenceClement, J., Kiefer, K., Kimpfler, A., Garidel, P., Peschka-Süss, R., Large-scale production of lipoplexes with long shelf-life (2005) Eur. J. Pharm. Biopharm., 59, pp. 35-43pt_BR
dc.description.referenceBalbino, T.A., Azzoni, A.R., De La Torre, L.G., Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy (2013) Colloids Surf., B, 111 C, pp. 203-210pt_BR
dc.description.referenceSaranya, N., Moorthi, A., Saravanan, S., Devi, M.P., Selvamurugan, N., Chitosan and its derivatives for gene delivery (2011) Int. J. Biol. Macromol., 48, pp. 234-238pt_BR
dc.description.referenceKhan, W., Hosseinkhani, H., Ickowicz, D., Hong, P.-D., Yu, D.-S., Domb, A.J., Polysaccharide gene transfection agents (2012) Acta Biomater., 8, pp. 4224-4232pt_BR
dc.description.referenceSokolova, V., Epple, M., Inorganic nanoparticles as carriers of nucleic acids into cells (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 1382-1395pt_BR
dc.description.referenceChaturvedi, K., Ganguly, K., Kulkarni, A.R., Kulkarni, V.H., Nadagouda, M.N., Rudzinski, W.E., Cyclodextrin-based siRNA delivery nanocarriers: A state-of-the-art review (2011) Expert Opin. Drug Deliv., 8, pp. 1455-1468pt_BR
dc.description.referenceOrtiz Mellet, C., García Fernández, J.M., Benito, J.M., Cyclodextrin-based gene delivery systems (2011) Chem. Soc. Rev., 40, pp. 1586-1608pt_BR
dc.description.referenceLaga, R., Carlisle, R., Tangney, M., Ulbrich, K., Seymour, L.W., Polymer coatings for delivery of nucleic acid therapeutics (2012) J. Control. Release, 161, pp. 537-553pt_BR
dc.description.referenceElouahabi, A., Ruysschaert, J., Formation and intracellular trafficking of lipoplexes and polyplexes (2005) Mol. Ther., 11, pp. 336-347pt_BR
dc.description.referenceTorchilin, V.P., Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery (2008) Biopolymers, 90, pp. 604-610pt_BR
dc.description.referenceBolhassani, A., Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer (2011) Biochim. Biophys. Acta, 1816, pp. 232-246pt_BR
dc.description.referenceRuozi, B., Forni, F., Battini, R., Vandelli, M.A., Cationic liposomes for gene transfection (2003) J. Drug Target., 11, pp. 407-414pt_BR
dc.description.referenceZhou, H.-S., Liu, D.-P., Liang, C.-C., Challenges and strategies: The immune responses in gene therapy (2004) Med. Res. Rev., 24, pp. 748-761pt_BR
dc.description.referenceBondi, M.L., Craparo, E.F., Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art (2010) Expert Opin. Drug Deliv., 7, pp. 7-18pt_BR
dc.description.referenceBunjes, H., Lipid nanoparticles for the delivery of poorly water-soluble drugs (2010) J. Pharm. Pharmacol., 62, pp. 1637-1645pt_BR
dc.description.referenceWissing, S.A., Kayser, O., Müller, R.H., Solid lipid nanoparticles for parenteral drug delivery (2004) Adv. Drug Deliv. Rev., 56, pp. 1257-1272pt_BR
dc.description.referenceBlasi, P.P., Giovagnoli, S.S., Schoubben, A.A., Ricci, M.M., Rossi, C.C., Solid lipid nanoparticles for targeted brain drug delivery (2007) Adv. Drug Deliv. Rev., 59, pp. 454-477pt_BR
dc.description.referenceMuchow, M., Maincent, P., Müller, R.H., Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery (2008) Drug Dev. Ind. Pharm., 34, pp. 1394-1405pt_BR
dc.description.referenceManjunath, K., Reddy, J.S., Venkateswarlu, V., Solid lipid nanoparticles as drug delivery systems (2005) Methods Find. Exp. Clin. Pharmacol., 27, pp. 127-144pt_BR
dc.description.referenceMüller, R.H., Mäder, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art (2000) Eur. J. Pharm. Biopharm., 50, pp. 161-177pt_BR
dc.description.referenceDu Plessis, L.H., Marais, E.B., Mohammed, F., Kotze, A.F., Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics (2014) Curr. Pharm. Biotechnol., 15, pp. 659-672pt_BR
dc.description.referenceOlbrich, C., Bakowsky, U., Lehr, C.M., Müller, R.H., Kneuer, C., Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA (2001) J. Control. Release, 77, pp. 345-355pt_BR
dc.description.referenceDe Jesus, M.B., Radaic, A., Zuhorn, I.S., Paula, E., Microemulsion extrusion technique: A new method to produce lipid nanoparticles (2013) J. Nanopart. Res., 15, pp. 1-15pt_BR
dc.description.referenceYu, Y.H., Kim, E., Park, D.E., Shim, G., Lee, S., Kim, Y.B., Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA (2012) Eur. J. Pharm. Biopharm., 80, pp. 268-273pt_BR
dc.description.referencePatel, S., Chavhan, S., Soni, H., Babbar, A.K., Mathur, R., Mishra, A.K., Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route (2010) J. Drug Target.pt_BR
dc.description.referenceYu, W., Liu, C., Ye, J., Zou, W., Zhang, N., Xu, W., Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery (2009) Nanotechnology, 20, p. 215102pt_BR
dc.description.referenceGarud, A., Singh, D., Garud, N., Solid lipid nanoparticles (SLN): Method, characterization and applications (2012) Int. Curr. Pharm. J., 1, pp. 384-393pt_BR
dc.description.referenceTabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.-M., Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer (2004) Eur. J. Pharm. Biopharm., 57, pp. 155-162pt_BR
dc.description.referenceJenning, V., Thünemann, A.F., Gohla, S.H., Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids (2000) Int. J. Pharm., 199, pp. 167-177pt_BR
dc.description.referenceJenning, V., Gohla, S., Comparison of wax and glyceride solid lipid nanoparticles (SLN) (2000) Int. J. Pharm., 196, pp. 219-222pt_BR
dc.description.referenceFreitas, C., Müller, R.H., Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase (1999) Eur. J. Pharm. Biopharm., 47, pp. 125-132pt_BR
dc.description.referenceBunjes, H., Koch, M.H.J., Westesen, K., Influence of emulsifiers on the crystallization of solid lipid nanoparticles (2003) J. Pharm. Sci., 92, pp. 1509-1520pt_BR
dc.description.referenceMehnert, W., Mäder, K., Solid lipid nanoparticles: Production, characterization and applications (2001) Adv. Drug Deliv. Rev., 47, pp. 165-196pt_BR
dc.description.referenceAttama, A.A., SLN, NLC, LDC: State of the art in drug and active delivery (2011) Recent Pat. Drug Deliv. Formul., 5, pp. 178-187pt_BR
dc.description.referenceTros De Ilarduya, C., Sun, Y., Düzgüneş, N., Gene delivery by lipoplexes and polyplexes (2010) Eur. J. Pharm. Sci., 40, pp. 159-170pt_BR
dc.description.referenceParhi, R., Suresh, P., Preparation and characterization of solid lipid nanoparticles - A review (2012) Curr. Drug Discov. Technol., 9, pp. 2-16pt_BR
dc.description.referenceCorrias, F., Lai, F., New methods for lipid nanoparticles preparation (2011) Recent Pat. Drug Deliv. Formul., 5, pp. 201-213pt_BR
dc.description.referenceSouto, E.B., Severino, P., Santana, M.H.A., Pinho, S.C., Solid lipid nanoparticles: Classical methods of lab production (2011) Quim. Nova, 34, pp. 1762-1769pt_BR
dc.description.referenceRadomska-Soukharev, A., Stability of lipid excipients in solid lipid nanoparticles (2007) Adv. Drug Deliv. Rev., 59, pp. 411-418pt_BR
dc.description.referenceGasco, M.R., (1993) Method for Producing Solid Lipid Microspheres Having A Narrow Size Distribution, , 5250236pt_BR
dc.description.referenceMuller, R., Lucks, J., (1996) Arzneistoffträger Aus Festen Lipid Teilchen - Feste Lipid Nanosphären (SLN), , EP 0605497pt_BR
dc.description.referenceJiang, Z., Sun, C., Yin, Z., Zhou, F., Ge, L., Liu, X., Comparison of two kinds of nanomedicine for targeted gene therapy: Premodified or postmodified gene delivery systems (2012) Int. J. Nanomedicine, 7, pp. 2019-2031pt_BR
dc.description.referenceMüller, R.H., Shegokar, R., Keck, C.M., 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications (2011) Curr. Drug Discov. Technol., 8, pp. 207-227pt_BR
dc.description.referenceTabatt, K., Kneuer, C., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.-M., Transfection with different colloidal systems: Comparison of solid lipid nanoparticles and liposomes (2004) J. Control. Release, 97, pp. 321-332pt_BR
dc.description.referenceDingler, A., Gohla, S., Production of solid lipid nanoparticles (SLN): Scaling up feasibilities (2002) J. Microencapsul., 19, pp. 11-16pt_BR
dc.description.referenceBattaglia, L.S., Cavalli, R., Trotta, M., (2008) Method for the Preparation of Solid Lipid Micro and Nanoparticles, , WO2008149215A2pt_BR
dc.description.referenceZhang, Yun, Shen, Chen, Yao, Chen, Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction (2008) Chem. Eng. Sci., 63, pp. 5600-5605pt_BR
dc.description.referenceBalbino, T.A., Aoki, N.T., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications (2013) Chem. Eng. J., 226, pp. 423-433pt_BR
dc.description.referenceBae, Y.H., Park, K., Targeted drug delivery to tumors: Myths, reality and possibility (2011) J. Control. Release, 153, pp. 198-205pt_BR
dc.description.referenceDel Pozo-Rodríguez, A., Delgado, D., Solinís, M.A., Gascón, A.R., Pedraz, J.L., Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity (2007) Int. J. Pharm., 339, pp. 261-268pt_BR
dc.description.referenceKim, H.R., Kim, I.K., Bae, K.H., Lee, S.H., Lee, Y., Park, T.G., Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA (2008) Mol. Pharm., 5, pp. 622-631pt_BR
dc.description.referenceCarrillo, C., Sánchez-Hernández, N., García-Montoya, E., Pérez-Lozano, P., Suñé-Negre, J.M., Ticó, J.R., DNA delivery via cationic solid lipid nanoparticles (SLNs) (2013) Eur. J. Pharm. Sci., 49, pp. 157-165pt_BR
dc.description.referenceJores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K., Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy (2004) J. Control. Release, 95, pp. 217-227pt_BR
dc.description.referenceDe Jesus, M.B., Radaic, A., Hinrichs, W.L.J., Ferreira, C.V., De Paula, E., Hoekstra, D., Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency (2014) J. Biomed. Nanotechnol., 10, pp. 355-365pt_BR
dc.description.referenceYu, W., Liu, C., Liu, Y., Zhang, N., Xu, W., Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages (2010) Pharm. Res., 27, pp. 1584-1596pt_BR
dc.description.referenceVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., PDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles (2010) Int. J. Pharm., 389, pp. 254-261pt_BR
dc.description.referenceMontana, G., Bondi, M.L., Carrotta, R., Picone, P., Craparo, E.F., San Biagio, P.L., Employment of cationic solid-lipid nanoparticles as RNA carriers (2007) Bioconjug. Chem., 18, pp. 302-308pt_BR
dc.description.referenceSouto, E.B., Almeida, A.J., Müller, R.H., Lipid nanoparticles (SLN, NLC) for cutaneous drug delivery: Structure, protection and skin effects (2007) J. Biomed. Nanotechnol., 3, pp. 317-331pt_BR
dc.description.referenceVighi, E.E., Leot, E.E., Montanari, M.M., Mucci, A.A., Hanuskova, M.M., Iannuccelli, V.V., Structural investigation and intracellular trafficking of a novel multicomposite cationic solid lipid nanoparticle platform as a pDNA carrier (2011) Ther. Deliv., 2, pp. 1419-1435pt_BR
dc.description.referenceJenning, V., Mäder, K., Gohla, S.H., Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: A (1)H-NMR study (2000) Int. J. Pharm., 205, pp. 15-21pt_BR
dc.description.referenceGarcia-Fuentes, M., Alonso, M.J., Torres, D., Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures (2005) J. Colloid Interface Sci., 285, pp. 590-598pt_BR
dc.description.referencePietkiewicz, J., Sznitowska, M., Placzek, M., The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates (2006) Int. J. Pharm., 310, pp. 64-71pt_BR
dc.description.referenceKarmali, P.P., Chaudhuri, A., Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises (2007) Med. Res. Rev., 27, pp. 696-722pt_BR
dc.description.referenceWasungu, L., Hoekstra, D., Cationic lipids, lipoplexes and intracellular delivery of genes (2006) J. Control. Release, 116, pp. 255-264pt_BR
dc.description.referenceSpink, C.H., Chaires, J.B., Thermodynamics of the binding of a cationic lipid to DNA (1997) J. Am. Chem. Soc., 119, pp. 10920-10928pt_BR
dc.description.referenceBruinsma, R., Electrostatics of DNA-cationic lipid complexes: Isoelectric instability (1998) Eur. Phys. J. e Soft Matter, 4, pp. 75-88pt_BR
dc.description.referenceHarries, D., May, S., Gelbart, W.M., Ben-Shaul, A., Structure, stability, and thermodynamics of lamellar DNA-lipid complexes (1998) Biophys. J., 75, pp. 159-173pt_BR
dc.description.referenceZuidam, N.J., Hirsch-Lerner, D., Margulies, S., Barenholz, Y., Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency (1999) Biochim. Biophys. Acta, 1419, pp. 207-220pt_BR
dc.description.referenceKennedy, M.T., Pozharski, E.V., Rakhmanova, V.A., Macdonald, R.C., Factors governing the assembly of cationic phospholipid-DNA complexes (2000) Biophys. J., 78, pp. 1620-1633pt_BR
dc.description.referenceBarreleiro, P.C.A., Olofsson, G., Alexandridis, P., Interaction of DNA with cationic vesicles: A calorimetric study (2000) J. Phys. Chem. B, 104, pp. 7795-7802pt_BR
dc.description.referenceWagner, K., Harries, D., May, S., Kahl, V., Rädler, J.O., Ben-Shaul, A., Direct evidence for counterion release upon cationic lipid-DNA condensation (2000) Langmuir, 16, pp. 303-306pt_BR
dc.description.referenceMatulis, D., Rouzina, I., Bloomfield, V.A., Thermodynamics of cationic lipid binding to DNA and DNA condensation: Roles of electrostatics and hydrophobicity (2002) J. Am. Chem. Soc., 124, pp. 7331-7342pt_BR
dc.description.referenceEastman, S.J., Siegel, C., Tousignant, J., Smith, A.E., Cheng, S.H., Scheule, R.K., Biophysical characterization of cationic lipid: DNA complexes (1997) Biochim. Biophys. Acta, 1325, pp. 41-62pt_BR
dc.description.referencePozharski, E., Macdonald, R.C., Lipoplex thermodynamics: Determination of DNA-cationic lipoid interaction energies (2003) Biophys. J., 85, pp. 3969-3978pt_BR
dc.description.referenceShirahama, K., Takashima, K., Takisawa, N., Interaction between dodecyltrimethylammonium chloride and DNA (1987) Bull. Chem. Soc. Jpn, 60, pp. 43-47pt_BR
dc.description.referenceHirsch-Lerner, D., Barenholz, Y., Hydration of lipoplexes commonly used in gene delivery: Follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry (1999) Biochim. Biophys. Acta, 1461, pp. 47-57pt_BR
dc.description.referenceLazaridis, T., (2013) Hydrophobic Effect, , John Wiley & Sons, Ltdpt_BR
dc.description.referenceOberle, V., Bakowsky, U., Zuhorn, I.S., Hoekstra, D., Lipoplex formation under equilibrium conditions reveals a three-step mechanism (2000) Biophys. J., 79, pp. 1447-1454pt_BR
dc.description.referenceMa, B., Zhang, S., Jiang, H., Zhao, B., Lv, H., Lipoplex morphologies and their influences on transfection efficiency in gene delivery (2007) J. Control. Release, 123, pp. 184-194pt_BR
dc.description.referenceBraun, C.S., Jas, G.S., Choosakoonkriang, S., Koe, G.S., The structure of DNA within cationic lipid/DNA complexes (2003) Biophys. J., 84, pp. 1114-1123pt_BR
dc.description.referenceKikuchi, I.S., Carmona-Ribeiro, A.M., Interactions between DNA and synthetic cationic liposomes (2000) J. Phys. Chem. B, 104, pp. 2829-2835pt_BR
dc.description.referencePector, V., Backmann, J., Maes, D., Vandenbranden, M., Ruysschaert, J.M., Biophysical and structural properties of DNA.diC(14)-amidine complexes. Influence of the DNA/lipid ratio (2000) J. Biol. Chem., 275, pp. 29533-29538pt_BR
dc.description.referenceGershon, H., Ghirlando, R., Guttman, S.B., Minsky, A., Mode of formation and structural features of DNA-cationic liposome complexes used for transfection (1993) Biochemistry, 32, pp. 7143-7151pt_BR
dc.description.referenceSternberg, B., Sorgi, F.L., Huang, L., New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy (1994) FEBS Lett., 356, pp. 361-366pt_BR
dc.description.referenceLasic, D.D., Strey, H., Stuart, M.C.A., Podgornik, R., Frederik, P.M., The structure of DNA-liposome complexes (1997) J. Am. Chem. Soc., 119, pp. 832-833pt_BR
dc.description.referenceSmisterová, J., Wagenaar, A., Stuart, M.C., Polushkin, E., Ten Brinke, G., Hulst, R., Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery (2001) J. Biol. Chem., 276, pp. 47615-47622pt_BR
dc.description.referenceRädler, J.O., Koltover, I., Salditt, T., Safinya, C.R., Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes (1997) Science, 275, pp. 810-814pt_BR
dc.description.referenceBarreleiro, P.C.A., May, R.P., Lindman, B.R., Mechanism of formation of DNA-cationic vesicle complexes (2002) Faraday Discuss., 122, pp. 191-201pt_BR
dc.description.referenceKoltover, I., Salditt, T., Rädler, J.O., Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery (1998) Science, 281, pp. 78-81pt_BR
dc.description.referenceRakhmanova, V.A., McIntosh, T.J., Macdonald, R.C., Effects of dioleoylphosphatidylethanolamine on the activity and structure of O-alkyl phosphatidylcholine-DNA transfection complexes (2000) Cell. Mol. Biol. Lett., 5, pp. 51-66pt_BR
dc.description.referenceSafinya, C.R., Structures of lipid-DNA complexes: Supramolecular assembly and gene delivery (2001) Curr. Opin. Struct. Biol., 11, pp. 440-448pt_BR
dc.description.referenceRullaud, V., Siragusa, M., Cumbo, A., Gygax, D., Shahgaldian, P., DNA surface coating of calixarene-based nanoparticles: A sequence-dependent binding mechanism (2012) Chem. Commun., 48, pp. 12186-12188pt_BR
dc.description.referenceHelttunen, K., Shahgaldian, P., Self-assembly of amphiphilic calixarenes and resorcinarenes in water (2010) New J. Chem., 34, pp. 2704-2714pt_BR
dc.description.referenceYe, J., Wang, A., Liu, C., Chen, Z., Zhang, N., Anionic solid lipid nanoparticles supported on protamine/DNA complexes (2008) Nanotechnology, 19, p. 285708pt_BR
dc.description.referenceDoktorovova, S., Shegokar, R., Rakovsky, E., Gonzalez-Mira, E., Lopes, C.M., Silva, A.M., Cationic solid lipid nanoparticles (cSLN): Structure, stability and DNA binding capacity correlation studies (2011) Int. J. Pharm., 420, pp. 341-349pt_BR
dc.description.referenceAsasutjarit, R., Lorenzen, S.-I., Sirivichayakul, S., Ruxrungtham, K., Ruktanonchai, U., Ritthidej, G.C., Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection (2007) Pharm. Res., 24, pp. 1098-1107pt_BR
dc.description.referenceMoghaddam, B., McNeil, S.E., Zheng, Q., Mohammed, A.R., Perrie, Y., Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy (2011) Pharmaceutics, 3, pp. 848-864pt_BR
dc.description.referenceMinchin, R.F., Yang, S., Endosomal disruptors in non-viral gene delivery (2010) Expert Opin. Drug Deliv., 7, pp. 331-339pt_BR
dc.description.referenceVarkouhi, A.K., Scholte, M., Storm, G., Haisma, H.J., Endosomal escape pathways for delivery of biologicals (2011) J. Control. Release, 151, pp. 220-228pt_BR
dc.description.referenceLiang, W., Lam, J.K.W., Endosomal escape pathways for non-viral nucleic acid delivery systems (2012) Intechopen.compt_BR
dc.description.referenceRehman, Z.U., Hoekstra, D., Zuhorn, I.S., On the mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: Real-time visualization of transient membrane destabilization without endosomal lysis (2013) ACS Nanopt_BR
dc.description.referenceBehr, J.-P., The proton sponge: A trick to enter cells the viruses did not exploit (1997) Chimia, 51, pp. 1-2pt_BR
dc.description.referenceBenjaminsen, R.V., Mattebjerg, M.A., Henriksen, J.R., Moghimi, S.M., Andresen, T.L., The possible "proton sponge" effect of polyethylenimine (PEI) does not include change in lysosomal pH (2013) Mol. Ther., 21, pp. 149-157pt_BR
dc.description.referencePinnaduwage, P., Schmitt, L., Huang, L., Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells (1989) Biochim. Biophys. Acta, 985, pp. 33-37pt_BR
dc.description.referenceFarhood, H., Serbina, N., Huang, L., The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer (1995) Biochim. Biophys. Acta, 1235, pp. 289-295pt_BR
dc.description.referenceZelphati, O., Szoka, F., Mechanism of oligonucleotide release from cationic liposomes (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 11493-11498pt_BR
dc.description.referenceLee, E.R., Marshall, J., Siegel, C.S., Jiang, C., Yew, N.S., Nichols, M.R., Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung (1996) Hum. Gene Ther., 7, pp. 1701-1717pt_BR
dc.description.referenceMok, K.W., Cullis, P.R., Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA (1997) Biophys. J., 73, pp. 2534-2545pt_BR
dc.description.referenceZuhorn, I.S., Bakowsky, U., Polushkin, E., Visser, W.H., Stuart, M.C.A., Engberts, J.B.F.N., Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency (2005) Mol. Ther., 11, pp. 801-810pt_BR
dc.description.referenceWrobel, I., Collins, D., Fusion of cationic liposomes with mammalian cells occurs after endocytosis (1995) Biochim. Biophys. Acta, 1235, pp. 296-304pt_BR
dc.description.referenceHafez, I.M., Cullis, P.R., Roles of lipid polymorphism in intracellular delivery (2001) Adv. Drug Deliv. Rev., 47, pp. 139-148pt_BR
dc.description.referenceShi, F., Wasungu, L., Nomden, A., Stuart, M.C.A., Polushkin, E., Engberts, J.B.F.N., Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotidespt_BR
dc.description.referenceRole of lipid exchangeability and non-lamellar transitions (2002) Biochem. J., 366, pp. 333-341pt_BR
dc.description.referenceChoi, S.H., Jin, S.-E., Lee, M.-K., Lim, S.-J., Park, J.-S., Kim, B.-G., Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells (2008) Eur. J. Pharm. Biopharm., 68, pp. 545-554pt_BR
dc.description.referenceRudolph, C., Schillinger, U., Ortiz, A., Tabatt, K., Plank, C., Müller, R.H., Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo (2004) Pharm. Res., 21, pp. 1662-1669pt_BR
dc.description.referenceDelgado, D., Del Pozo-Rodríguez, A., Solinís M.Á., Rodríguez-Gascón, A., Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: The importance of the entry pathway (2011) Eur. J. Pharm. Biopharm., 79, pp. 495-502pt_BR
dc.description.referenceOlbrich, C.C., Müller, R.H.R., Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures (1999) Int. J. Pharm., 180, pp. 31-39pt_BR
dc.description.referenceXue, H.-Y., Wong, H.-L., Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization (2011) Biomaterials, 32, pp. 2662-2672pt_BR
dc.description.referenceDel Pozo-Rodríguez, A., Delgado, D., Solinís M.Á., Pedraz, J.L., Echevarría, E., Rodríguez, J.M., Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration (2010) Int. J. Pharm., 385, pp. 157-162pt_BR
dc.description.referenceLeung, A.K.K., Hafez, I.M., Baoukina, S., Belliveau, N.M., Zhigaltsev, I.V., Afshinmanesh, E., Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core (2012) J. Phys. Chem. C Nanomater. Interfaces, 116, pp. 18440-18450pt_BR
dc.description.referenceBunjes, H., Drechsler, M., Koch, M.H., Westesen, K., Incorporation of the model drug ubidecarenone into solid lipid nanoparticles (2001) Pharm. Res., 18, pp. 287-293pt_BR
dc.description.referenceHayes, M.E., Drummond, D.C., Hong, K., Park, J.W., Marks, J.D., Kirpotin, D.B., Assembly of nucleic acid-lipid nanoparticles from aqueous-organic monophases (2006) Biochim. Biophys. Acta, 1758, pp. 429-442pt_BR
dc.description.referenceSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles (2011) Colloids Surf., B, 86, pp. 125-130pt_BR
dc.description.referenceKuo, Y.-C., Wang, C.-C., Electrophoresis of human brain microvascular endothelial cells with uptake of cationic solid lipid nanoparticles: Effect of surfactant composition (2010) Colloids Surf., B, 76, pp. 286-291pt_BR
dc.description.referenceGriffin, W.C., Classification of surface-active agents by "hLB" (1949) J. Soc. Cosmet. Chem., 1, pp. 311-326pt_BR
dc.description.referenceHeurtault, B., Saulnier, P., Pech, B., Proust, J.-E., Benoit, J.-P., Physico-chemical stability of colloidal lipid particles (2003) Biomaterials, 24, pp. 4283-4300pt_BR
dc.description.referenceGasco, M.R., Lipid nanoparticles: Perspectives and challenges (2007) Adv. Drug Deliv. Rev., 59, pp. 377-378pt_BR
dc.description.referenceLiu, Z., Zhong, Z., Peng, G., Wang, S., Du, X., Yan, D., Folate receptor mediated intracellular gene delivery using the charge changing solid lipid nanoparticles (2009) Drug Deliv., 16, pp. 341-347pt_BR
dc.description.referenceSeetapan, N., Bejrapha, P., Srinuanchai, W., Ruktanonchai, U.R., Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs) (2010) Micron, 41, pp. 51-58pt_BR
dc.description.referenceVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid (2007) Eur. J. Pharm. Biopharm., 67, pp. 320-328pt_BR
dc.description.referenceAbdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., Freeze-drying of nanoparticles: Formulation, process and storage considerations (2006) Adv. Drug Deliv. Rev., 58, pp. 1688-1713pt_BR
dc.description.referenceDel Pozo-Rodríguez, A., Solinís, M.A., Gascón, A.R., Pedraz, J.L., Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy (2009) Eur. J. Pharm. Biopharm., 71, pp. 181-189pt_BR
dc.description.referencePoxon, S.W., Hughes, J.A., The effect of lyophilization on plasmid DNA activity (2000) Pharm. Dev. Technol., 5, pp. 115-122pt_BR
dc.description.referenceHeiati, H., Tawashi, R., Phillips, N.C., Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization (1998) J. Microencapsul., 15, pp. 173-184pt_BR
dc.description.referenceChollet, P., Favrot, M.C., Hurbin, A., Coll, J.-L., Side-effects of a systemic injection of linear polyethylenimine-DNA complexes (2002) J. Gene Med., 4, pp. 84-91pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84921059282.pdf1.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.