Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Hypobromous Acid, A Powerful Endogenous Electrophile: Experimental And Theoretical Studies
Author: Ximenes V.F.
Morgon N.H.
De Souza A.R.
Abstract: Abstract Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br-). The blood plasma level of Br- is more than 1,000-fold lower than that of chloride anion (Cl-). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2 = 2.3 × 102 M- 1 s- 1, HOCl non-reactive); dansylglycine (HOBr, k2 = 7.3 × 106 M- 1 s- 1, HOCl, 5.2 × 102 M- 1 s- 1); salicylic acid (HOBr, k2 = 4.0 × 104 M- 1 s- 1, non-reactive); 3-hydroxybenzoic acid (HOBr, k2 = 5.9 × 104 M- 1 s- 1, HOCl, k2 = 1.1 × 101 M- 1 s- 1); uridine (HOBr, k2 = 1.3 × 103 M- 1 s- 1, HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile.
Editor: Elsevier Inc.
Rights: fechado
Identifier DOI: 10.1016/j.jinorgbio.2015.02.014
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84924872987.pdf1.01 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.