Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Magnetic properties of MnN: Influence of strain and crystal structure
Author: Marques, M
Teles, LK
Scolfaro, LMR
Furthmuller, J
Bechstedt, F
Ferreira, LG
Abstract: For manganese mononitride (MnN), the total energy versus lattice constant is obtained using the spin density functional theory. Instead of the tetragonally distorted NaCl structure, we study the zinc blende and wurtzite structures in which AlN, GaN, and InN crystallize. The ground state with nonmagnetic, antiferromagnetic (AFM), or ferromagnetic (FM) arrangement of spins depends on the polymorph of MnN and on the lattice constant. At equilibrium lattice constants, in zinc blende it is AFM in [100] direction, and in wurtzite it is FM. The zinc blende polytype of MnN under hydrostatic pressure at the InN lattice constant presents FM ground state. For the wurtzite polytype at the GaN and AIN lattice constants, the AFM is the ground state, but goes back to a FM ground state for the InN lattice constants. For both, structures, the system presents a half-metallic state at InN lattice constants (with a total magnetic moment of 4 mu(B) per Mn atom) instead of the metallic state obtained for smaller lattice constants. Results indicate that the FM or the AFM state of Ga1-xMnxN and In1-xMnxN may be related to, relaxed, or strained, MnN incorporations or Mn-rich composition fluctuations. (c) 2005 American Institute of Physics.
Country: EUA
Editor: Amer Inst Physics
Citation: Applied Physics Letters. Amer Inst Physics, v. 86, n. 16, 2005.
Rights: aberto
Identifier DOI: 10.1063/1.1905787
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000229040300080.pdf245.94 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.