Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Multiplicity of nodal solutions for a critical quasilinear equation with symmetry
Author: Furtado, MF
Abstract: We consider the quasilinear problem div(vertical bar del u vertical bar(p-2)del u) + lambda vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(p*-2) u=0 in Omega, u=0 on partial derivative Omega, where Omega subset of R-N is a bounded smooth domain, N >= p(2), lambda > 0 and p < q < p* = Np/(N - p). We show that if Omega is invariant under a nontrivial orthogonal involution then, for lambda sufficiently small, there is an effect of the equivariant topology of Omega on the number of solutions which changes sign exactly once. (c) 2005 Elsevier Ltd. All rights reserved.
Subject: nodal solutions
critical problems
p-Laplace operator
equivariant category
Country: Inglaterra
Editor: Pergamon-elsevier Science Ltd
Rights: fechado
Identifier DOI: 10.1016/
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000234152500009.pdf183.94 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.