Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/81874
Type: Artigo
Title: On the Cauchy problem for the super Korteweg-de Vries system
Author: Moura, Roger Peres de
Pastor, Ademir
Abstract: Considered here is the super Korteweg-de Vries system: {partial derivative(t)u + partial derivative(3)(x)u + 1/2 partial derivative(x)(u(2)) + 1/2 partial derivative(2)(x)(v(2)) = 0, partial derivative(t)v + partial derivative(3)(x)v + partial derivative(x)(uv) = 0. For small initial data, we show local well-posedness in H-s(R)boolean AND H-1(x(2)dx) x H-s(R)boolean AND H-1(x(2)dx), s >= 3 integer, and for arbitrary large initial data we prove local well-posedness in H-s(R) boolean AND H-4(x(2)dx) x H-s(R) boolean AND H-4(x(2)dx), s >= 8 integer. To obtain our main result we improve some linear estimates due to Kenig and Staffilani (1997) [5]. (C) 2012 Elsevier Ltd. All rights reserved.
Considered here is the super Korteweg-de Vries system: {partial derivative(t)u + partial derivative(3)(x)u + 1/2 partial derivative(x)(u(2)) + 1/2 partial derivative(2)(x)(v(2)) = 0, partial derivative(t)v + partial derivative(3)(x)v + partial derivative(
Subject: Boa-colocação local
Problema de Cauchy
Equação de Korteweg-de Vries
Country: Reino Unido
Editor: Elsevier
Citation: Nonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 76, n. 229, n. 243, 2013.
Rights: Fechado
Identifier DOI: 10.1016/j.na.2012.08.017
Address: https://www.sciencedirect.com/science/article/pii/S0362546X12003495
Date Issue: 2013
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000310502100018.pdf381.51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.