Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: On the topological invariants Sigma(1)(top) and Sigma(2)(top) for extensions of (Lie groups over a p-adic field)-by-abelian groups
Author: Kochloukova, DH
Abstract: For G a locally compact group and i = 1, 2 we define topological versions Sigma(top)(i)(G) of the geometric homotopical invariants Sigma(1) and Sigma(2) of discrete groups. We calculate Sigma(top)(1)(G) and Z(top)(2) for G = exp(eta) x Q, eta a nilpotent Lie algebra over a local p-adic field K and Q an abstract free abelian group of finite rank that acts on exp eta via topological automorphisms. An important part of the structure of eta is that it splits as a direct sum of one-dimensional (over K) K[Q]-modules. We conjecture the structure of the Bieri-Strebel-Renz invariant Sigma(2)(H) for a discrete nilpotent-by-abelian S-arithmetic group H. The invariant Sigma(2)(H) characterizes the finitely presented subgroups of H that contain the commutator. (C) 2004 Elsevier Inc. All rights reserved.
Country: EUA
Editor: Academic Press Inc Elsevier Science
Rights: fechado
Identifier DOI: 10.1016/j.algebra.2004.08.018
Date Issue: 2004
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000225308100004.pdf374.08 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.