Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/81706
Type: Artigo
Title: On the topological invariants Σtop1 and Σtop2 for extensions of (Lie groups over a p-adic field)-by-abelian groups
Author: Kochloukova, Dessislava H.
Abstract: For G a locally compact group and i = 1, 2 we define topological versions Sigma(top)(i)(G) of the geometric homotopical invariants Sigma(1) and Sigma(2) of discrete groups. We calculate Sigma(top)(1)(G) and Z(top)(2) for G = exp(eta) x Q, eta a nilpotent Lie algebra over a local p-adic field K and Q an abstract free abelian group of finite rank that acts on exp eta via topological automorphisms. An important part of the structure of eta is that it splits as a direct sum of one-dimensional (over K) K[Q]-modules. We conjecture the structure of the Bieri-Strebel-Renz invariant Sigma(2)(H) for a discrete nilpotent-by-abelian S-arithmetic group H. The invariant Sigma(2)(H) characterizes the finitely presented subgroups of H that contain the commutator. (C) 2004 Elsevier Inc. All rights reserved.
For G a locally compact group and i = 1, 2 we define topological versions Sigma(top)(i)(G) of the geometric homotopical invariants Sigma(1) and Sigma(2) of discrete groups. We calculate Sigma(top)(1)(G) and Z(top)(2) for G = exp(eta) x Q, eta a nilpotent
Subject: Isomorfismos (Matemática)
Módulos (Álgebra)
Álgebra homológica
Invariantes geométricos
Country: Estados Unidos
Editor: Elsevier
Citation: Journal Of Algebra. Academic Press Inc Elsevier Science, v. 282, n. 2, n. 538, n. 574, 2004.
Rights: Fechado
Identifier DOI: 10.1016/j.algebra.2004.08.018
Address: https://www.sciencedirect.com/science/article/pii/S0021869304004806
Date Issue: 2004
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000225308100004.pdf444 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.