Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Real linear quaternionic differential operators
Author: De Leo, S
Ducati, GC
Abstract: The renewed interest in searching for quaternionic deviations of standard (complex) quantum mechanics resulted, in the last years, in a better understanding of the quaternionic mathematical tools needed to solve quantum mechanical problems. In particular, a relevant progress has been achieved in solving eigenvalue problems and differential equations for quaternionic operators. The practical methods recently proposed to solve quaternionic and complex linear second-order differential equations with constant coefficients represent a fundamental starting point to discuss quaternionic potentials in quantum mechanics and study possible violations from complex theories. Nevertheless, only for a restricted class of real linear quaternionic differential operators (namely, symmetric operators) the solution of differential problems was given. In this paper, we study real linear quaternionic differential equations. The proposed resolution's method is based on the Jordan canonical form of (real linear) quaternionic matrices. (C) 2004 Elsevier Ltd. All rights reserved.
Subject: quaternions
differential operators
eigenvalue problem
canonical forms
quantum mechanics
Country: Inglaterra
Editor: Pergamon-elsevier Science Ltd
Rights: fechado
Identifier DOI: 10.1016/j.camwa.2004.03.010
Date Issue: 2004
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000226716500009.pdf395.36 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.