Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/79462
Type: Artigo de periódico
Title: DENSITY OF INFIMUM-STABLE CONVEX CONES
Author: PROLLA, JB
Abstract: Let X be a compact Hausdorff space and let A be a linear subspace of C(X; R) containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny.
Country: EUA
Editor: Amer Mathematical Soc
Rights: aberto
Identifier DOI: 10.2307/2160379
Date Issue: 1994
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOSA1994NG61200022.pdf132.25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.