Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Decoherence rates in complex Josephson qubit circuits
Author: DiVincenzo, DP
Brito, F
Koch, RH
Abstract: A complete analysis of the decoherence properties of a Josephson junction qubit is presented. The qubit is of the flux type and consists of two large loops forming a gradiometer, one small loop, and three Josephson junctions. We develop a complete, quantitative description of the inductances and capacitances of the circuit. Including two stray capacitances makes the quantum mechanical modeling of the system five dimensional. To make the required calculation tractable, we devise a general Born-Oppenheimer approximation which reduces the effective dimensionality in the calculation to one. Contributions to relaxation (T(1)) and dephasing (T(phi)) arising from two different control circuits, one coupled to the small loop and one coupled to a large loop, is computed. We explore T(1) and T(phi) along an optimal line in the space of applied fluxes; along this 'S line' we see significant and rapidly varying contributions to the decoherence parameters, primarily from the circuit coupling to the large loop.
Country: EUA
Editor: Amer Physical Soc
Citation: Physical Review B. Amer Physical Soc, v. 74, n. 1, 2006.
Rights: aberto
Identifier DOI: 10.1103/PhysRevB.74.014514
Date Issue: 2006
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000239426400106.pdf1.58 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.