Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition
Author: da Silva, S
Dias, M
Lopes, V
Abstract: Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there art many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure.
Subject: structural health monitoring
damage detection
principal component analysis
time series
c-means clustering
Country: Brasil
Editor: Abcm Brazilian Soc Mechanical Sciences & Engineering
Citation: Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 29, n. 2, n. 174, n. 184, 2007.
Rights: aberto
Date Issue: 2007
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000255403500007.pdf256.39 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.