Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/78609
Type: Artigo de periódico
Title: Cellular to dendritic transition during transient solidification of a eutectic Sn-0.7 wt%Cu solder alloy
Author: Moura, ITL
Silva, CLM
Cheung, N
Goulart, PR
Garcia, A
Spinelli, JE
Abstract: The eutectic Sn-0.7 wt%Cu alloy is considered an important alternative to replace the classic eutectic Sn-Pb alloy, used to join metallic surfaces in electronic devices. The stable Sn-Cu eutectic is composed of a mixture of a tin-rich phase and fibrous Cu6Sn5 intermetallic particles. The morphology, size and distribution of stable and metastable intermetallic particles may affect the mechanical properties of the alloy. The distribution of these intermetallics is characterized by the interphase spacing, which depends on thermal parameters such as the growth rate (nu) and the cooling rate ((T) over dot) during solidification. The aim of this study is to investigate the microstructural evolution of a eutectic Sn-0.7 wt%Cu.solder alloy during transient solidification. The resulting microstructural morphology depends on v and T. and in the case of soldering processes the control of these parameters is essential for the design of the final microstructure. A gradual cellular to dendritic transition was observed to occur for growth rates ranging from 0.3 to 0.5 mm s(-1) and cooling rates from 0.9 to 1.5K s(-1). The cellular region was shown to be characterized by aligned eutectic colonies, and experimental growth laws relating cellular, dendritic and interphase spacings to both v and T have been proposed. (C) 2011 Elsevier B.V. All rights reserved.
Subject: Alloys
Solidification
Optical metallography
Microstructure
Country: Suíça
Editor: Elsevier Science Sa
Rights: fechado
Identifier DOI: 10.1016/j.matchemphys.2011.11.033
Date Issue: 2012
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000300865900032.pdf1.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.