Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/78525
Type: Artigo de periódico
Title: Cauchy completeness in elementary logic
Author: Cifuentes, JC
Sette, AM
Mundici, D
Abstract: The inverse of the distance between two structures A not equal B of finite type sis naturally measured by the smallest integer q such that a sentence of quantifier rank q-1 is satisfied by A but not by B. In this way the space Str of structures of type tau is equipped with a pseudometric. The induced topology coincides with the elementary topology of Str(tau). Using the rudiments of the theory of uniform spaces, in this elementary note we prove the convergence of every Cauchy net of structures, for any type tau.
Editor: Assn Symbolic Logic Inc
Rights: aberto
Identifier DOI: 10.2307/2275809
Date Issue: 1996
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOSA1996WF13000003.pdf166.87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.