Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: The Ambrosetti-Prodi problem for gradient elliptic systems with critical homogeneous nonlinearity
Author: Ribeiro, B
Abstract: In this work we study the system { -Delta u = au + bv + F(u) (u(+), v(+)) + f(1)(x) in Omega, -Delta v = bu + cv + F(v)(u(+), v(+)) + f(2)(x) in Omega, u = 0, v = 0 on partial derivative Omega, where Omega subset of R(N) is bounded with smooth boundary, N >= 3, F = H + G, where H is a 2* equivalent to 2N/(N - 2) positively homogeneous function, G is a lower order perturbation, W(+) = max{w, 0} and f(1). f(2) is an element of L(r) (Omega), r > N. Using the Mountain Pass Theorem we prove existence of two solutions. If N = 3, 4 and 5, an additional hypothesis over the subcritical term is needed. (C) 2009 Elsevier Inc. All rights reserved.
Subject: Gradient systems
Critical growth
Country: EUA
Editor: Academic Press Inc Elsevier Science
Citation: Journal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 363, n. 2, n. 606, n. 617, 2010.
Rights: fechado
Identifier DOI: 10.1016/j.jmaa.2009.09.048
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000272149700022.pdf217.09 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.