Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Author: Rodrigues, WA
Abstract: In this paper we show how a gravitational field generated by a given energy-momentum distribution (for all realistic cases) can be represented by distinct geometrical structures (Lorentzian, teleparallel and nonnull nonmetricity spacetimes) or that we even can dispense all those geometrical structures and simply represent the gravitational field as a field, in the Faraday sense, living in Minkowski spacetime. The explicit Lagrangian density for this theory is given and the field equations (which are a set of four Maxwell's-like equations) are shown to be equivalent to Einstein's equations. We also analyze whether the teleparallel formulation can give a mathematical meaning to 'Einstein's most happy thought', i.e. the equivalence principle. Moreover we discuss the Hamiltonian formalism for our theory and its relation to one of the possible concepts for energy of the gravitational field which emerges from it and the concept of ADM energy. One of the main results of the paper is the identification in our theory of a legitimate energy-momentum tensor for the gravitational field expressible through a really nice formula.
Subject: Lorentzian geometry
teleparallel geometry
gravitational field
Country: Inglaterra
Editor: Pergamon-elsevier Science Ltd
Citation: Reports On Mathematical Physics. Pergamon-elsevier Science Ltd, v. 69, n. 2, n. 265, n. 279, 2012.
Rights: fechado
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000305712000010.pdf143.56 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.