Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: The Mobility of Chondroitin Sulfate in Articular and Artificial Cartilage Characterized by C-13 Magic-Angle Spinning NMR Spectroscopy
Author: Scheidt, HA
Schibur, S
Magalhaes, A
de Azevedo, ER
Bonagamba, TJ
Pascui, O
Schulz, R
Reichert, D
Huster, D
Abstract: We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying C-13 high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T-1 relaxation times are rather similar, the T-2 relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.
Subject: C-13 MAS NMR
relaxation rates
tissue engineering
molecular dynamics
Country: EUA
Editor: Wiley-blackwell
Citation: Biopolymers. Wiley-blackwell, v. 93, n. 6, n. 520, n. 532, 2010.
Rights: fechado
Identifier DOI: 10.1002/bip.21386
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000277011300003.pdf371.17 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.