Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/78112
Type: Artigo de periódico
Title: THE CENTER FOLIATION OF AN AFFINE DIFFEOMORPHISM
Author: FERES, R
Abstract: Given an affine (i.e. connection-preserving) diffeomorphism f of a Riemannian manifold M, we consider its center foliation, N, comprised by the directions that neither expand nor contract exponentially under the action generated by f. The main remarks made here (Corollary 3 and Theorem 7) are: There exists a metric compatible with the Levi-Civita connection for which the universal cover of M decomposes isometrically as the Riemannian product of the universal cover of a leaf of N (these covers are all isometric) and the Euclidean space; and if N is one-dimensional, M is flat and the foliation is (up to finite cover) the fiber foliation of a Riemannian submersion onto a flat torus.
Country: Holanda
Editor: Kluwer Academic Publ
Rights: fechado
Identifier DOI: 10.1007/BF01264922
Date Issue: 1993
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOSA1993LC47900011.pdf288.84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.