Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Transport of interfaces with surface tension by 2D viscous flows
Author: Ambrose, DM
Lopes, MC
Lopes, HJN
Strauss, WA
Abstract: We consider the problem of finding a global weak solution for two-dimensional, incompressible viscous flow on a torus, containing a surface-tension bearing curve transported by the flow. This is the simplest case of a class of two-phase flows considered by Plotnikov in [16] and Abels in [1]. Our work complements Abels' analysis by examining this special case in detail. We construct a family of approximations and show that the limit of these approximations satisfies, globally in time, an incomplete set of equations in the weak sense. In addition, we examine criteria for closure of the limit system, we find conditions which imply nontrivial dependence of the limiting solution on the surface tension parameter, and we obtain a new system of evolution equations which models our flow-interface problem, in a form that may be useful for further analysis and for numerical simulations.
Country: Suíça
Editor: European Mathematical Soc
Rights: aberto
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000275191500002.pdf205.19 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.