Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
Author: Iwashita, AS
Papa, JP
Souza, AN
Falcao, AX
Lotufo, RA
Oliveira, VM
de Albuquerque, VHC
Tavares, JMRS
Abstract: In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of 'big data' classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF. (C) 2014 Elsevier B. V. All rights reserved.
Subject: Machine learning
Pattern recognition
Optimum-path forest
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/j.patrec.2013.12.018
Date Issue: 2014
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.