Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/76617
Type: Artigo
Title: A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
Author: Iwashita, A. S.
Papa, J. P.
Souza, A. N.
Falcão, A. X.
Lotufo, R. A.
Oliveira, V. M.
Albuquerque, Victor Hugo C. de
Tavares, João Manuel R. S.
Abstract: In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of 'big data' classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF. (C) 2014 Elsevier B. V. All rights reserved.
In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine
Subject: Reconhecimento de padrões
Aprendizado de máquina
Floresta de caminhos ótimos
Country: Países Baixos
Editor: Elsevier
Citation: Pattern Recognition Letters. Elsevier Science Bv, v. 40, n. 121, n. 127, 2014.
Rights: Fechado
Identifier DOI: 10.1016/j.patrec.2013.12.018
Address: https://www.sciencedirect.com/science/article/pii/S0167865513005163
Date Issue: 2014
Appears in Collections:IC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000333105600016.pdf1.28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.