Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A lower bound on the reversal and transposition diameter
Author: Meidanis, J
Walter, MMT
Dias, Z
Abstract: One possible model to study genome evolution is to represent genomes as permutations of genes and compute distances based on the minimum number of certain operations (re-arrangements) needed to transform one permutation into another. Under this model, the shorter the distance, the closer the genomes are. Two operations that have been extensively studied are the reversal and the transposition. A reversal is an operation that reverses the order of the genes on a certain portion of the permutation. A transposition is an operation that 'cuts' a certain portion of the permutation and 'pastes' it elsewhere in the same permutation. In this note, we show that the reversal and transposition distance of the signed permutation pi(n) = (-1 -2... -(n - 1) -n) with respect to the identity is [n/2] +2 for all n greater than or equal to 3. We conjecture that this value is the diameter of the permutation group under these operations.
Subject: genome rearrangements
breakpoint graph
Country: EUA
Editor: Mary Ann Liebert Inc Publ
Rights: aberto
Identifier DOI: 10.1089/106652702761034163
Date Issue: 2002
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000179401200004.pdf126.63 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.