Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/75829
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUniversidade Estadual de Campinaspt_BR
dc.typeArtigo de periódicopt_BR
dc.titleA Fourier approach for nonlinear equations with singular datapt_BR
dc.contributor.authorFerreira, LCFpt_BR
dc.contributor.authorMontenegro, Mpt_BR
unicamp.author.emaillcff@ime.unicamp.brpt_BR
unicamp.author.emailmsm@ime.unicamp.brpt_BR
unicamp.authorFerreira, Lucas C. F. Montenegro, Marcelo Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazilpt_BR
dc.subject.wosConvection Problempt_BR
dc.subject.wosR-npt_BR
dc.subject.wosPotentialspt_BR
dc.subject.wosExistencept_BR
dc.subject.wosSpacept_BR
dc.description.abstractFor 0 < m < n, p a positive integer and p > n/(n - m), we study the inhomogeneous equation L (u) +u (p) + V (x)u + f(x) = 0 in a'e (n) with singular data f and V. The symbol sigma of the operator L is bounded from below by |xi| (m) . Examples of L are Laplacian, biharmonic and fractional order operators. Here f and V can have infinite singular points, change sign, oscillate at infinity, and be measures. Also, f and V can blow up on an unbounded (n-1)-manifold. The solution u can change sign, be nonradial and singular. If sigma, f and V are radial, then u is radial. The assumptions on f and V are in terms of their Fourier transforms and we provide some examples.pt
dc.relation.ispartofIsrael Journal Of Mathematicspt_BR
dc.relation.ispartofabbreviationIsr. J. Math.pt_BR
dc.publisher.cityJerusalempt_BR
dc.publisher.countryIsraelpt_BR
dc.publisherHebrew Univ Magnes Presspt_BR
dc.date.issued2013pt_BR
dc.date.monthofcirculationJANpt_BR
dc.identifier.citationIsrael Journal Of Mathematics. Hebrew Univ Magnes Press, v. 193, n. 1, n. 83, n. 107, 2013.pt_BR
dc.language.isoenpt_BR
dc.description.volume193pt_BR
dc.description.issuenumber1pt_BR
dc.description.firstpage83pt_BR
dc.description.lastpage107pt_BR
dc.rightsfechadopt_BR
dc.sourceWeb of Sciencept_BR
dc.identifier.issn0021-2172pt_BR
dc.identifier.wosidWOS:000317605900005pt_BR
dc.identifier.doi10.1007/s11856-012-0032-1pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorship1Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorship1Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.date.available2014-08-01T12:54:18Z
dc.date.available2015-11-26T16:46:48Z-
dc.date.accessioned2014-08-01T12:54:18Z
dc.date.accessioned2015-11-26T16:46:48Z-
dc.description.provenanceMade available in DSpace on 2014-08-01T12:54:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2013en
dc.description.provenanceMade available in DSpace on 2015-11-26T16:46:48Z (GMT). No. of bitstreams: 0 Previous issue date: 2013en
dc.identifier.urihttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/75829
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/75829-
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.