Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Structural incorporation of titanium and/or aluminum in layered silicate magadiite through direct syntheses
Author: Pires, CTGVMT
Oliveira, NG
Airoldi, C
Abstract: Synthesized inorganic layered magadiite containing structurally incorporated titanium and aluminum was obtained through hydrothermal procedures. The effects associated with reaction time and amount of metal used in the crystallization process yielded mostly pure and crystalline samples with 1.0% of aluminum after 36 h at 423 K. Amounts up to 4.0 and 2.0% for aluminum and titanium were successfully incorporated in the magadiite structure without co-crystallization of other phases. A higher amount of metal source or longer crystallization times led to formation of crystobalite and trydimite phases, detected by X-ray diffraction (XRD) and scanning electron microscopies. Metal incorporation slightly improved the thermal resistance of the precursor layered magadiite. Replacement of both atoms in the silicon network was examined by spectroscopy analysis. The changes in tetrahedral-oxygen-tetrahedral structural shape vibrations caused the appearance of the Ti-O-Si band at 960 cm(-1). Nuclear magnetic resonance in the solid state demonstrated tandem octahedral and tetrahedral aluminum sites. Another structural feature related to titanium incorporation was observed through diffuse reflectance with UV-Vis and X-ray photoelectron spectroscopies, which distinguish crystalline and amorphous TiO2 and titanium incorporated into the silica network. Metal quantification by energy dispersive spectroscopy and X-ray fluorescence (XRF) was also followed with multivariate analysis, including principal component analysis (PCA) and partial least squares (PLS). The PCA methodology procedure clearly gives information to separate sample groups, in agreement with XRD results, which becomes a valuable feature obtained for the first time for these kinds of materials. (C) 2012 Elsevier B.V. All rights reserved.
Subject: Magadiite
Isomorphic substitution
Layered material
Country: Suíça
Editor: Elsevier Science Sa
Citation: Materials Chemistry And Physics. Elsevier Science Sa, v. 135, n. 41700, n. 870, n. 879, 2012.
Rights: fechado
Identifier DOI: 10.1016/j.matchemphys.2012.05.072
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.