Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Structure imaging by atomic force microscopy and transmission electron microscopy of different light emitting species of porous silicon
Author: Sassaki, RM
Douglas, RA
Kleinke, MU
Teschke, O
Abstract: The complex pattern of the nanowire skeletons of different light emitting porous silicon structures is investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Diffraction lines and dark field images are used to identify and determine the crystallite specimen long range order. TEM images give the size and particle orientation, and AFM images show a three-dimensional pattern formed by an interconnecting skeleton of particles. Near infrared photoluminescent porous silicon (0.005 Omega cm) structures show a skeleton of nanosized silicon aggregates which form domains of spatially oriented crystallites. For red photoluminescent samples (4.9 Omega cm) the electron diffraction spots are discontinuously split into tiny intensity maxima. The diameter of the wire structure forming porous silicon as measured by TEM allows us to estimate the distortion of the AFM images due to the finite size of the tip radius. A critical angle alpha(0)=2 arctan[K/(1 - K)](1/2), where K is the ratio of the height of the structure to the tip diameter was defined and it was shown that for structure walls steeper than alpha(0) the distortion may be substantial. (C) 1996 American Vacuum Society.
Editor: Amer Inst Physics
Rights: aberto
Identifier DOI: 10.1116/1.588874
Date Issue: 1996
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOSA1996VD93100007.pdf2.76 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.