Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Sketched oxide single-electron transistor
Author: Cheng, GL
Siles, PF
Bi, F
Cen, C
Bogorin, DF
Bark, CW
Folkman, CM
Park, JW
Eom, CB
Medeiros-Ribeiro, G
Levy, J
Abstract: Devices that confine and process single electrons represent an important scaling limit of electronics(1,2). Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties(3-5). Here, we use an atomic force microscope tip to reversibly 'sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides(6-8). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of similar to 1.5 nm. We demonstrate control over the number of electrons on the island using bottom-and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
Country: Inglaterra
Editor: Nature Publishing Group
Rights: fechado
Identifier DOI: 10.1038/nnano.2011.56
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000291301900007.pdf3.08 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.