Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Simulation and response surface analysis for the optimization of a three-phase catalytic slurry reactor
Author: Hasan, SDM
Melo, DNC
Filho, RM
Abstract: Factorial design and response surface analysis techniques were used in combination with modeling and simulation to optimize an industrial hydrogenation process. A three-phase reactor for the production of cyclohexanol by hydrogenation of phenol in the presence of the catalyst Ni/SiO2, with a six-stage cooling system for temperature control was considered. The model equations form a system of ordinary differential equations derived from kinetic laws and steady-state balances for mass and energy for both reactants and coolant system. Initially, screening design was used to evaluate the process variables which were relevant to the cyclohexanol yield. Two statistically significant parameters (rates of hydrogen-Q(H) and catalyst-Q(Ni)) were selected and used in response surface methodology for process optimization. An improvement of 5.5% in cyclohexanol yield was observed for the optimized variables (Q(H) = 259 kg/h, Q(Ni) = 53 kg/h). (C) 2004 Elsevier B.V. All rights reserved.
Subject: three-phase reactor
steady-state modeling
response surface analysis
Country: Suíça
Editor: Elsevier Science Sa
Citation: Chemical Engineering And Processing. Elsevier Science Sa, v. 44, n. 3, n. 335, n. 343, 2005.
Rights: fechado
Identifier DOI: 10.1016/j.cep.2004.05.007
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000225150200001.pdf293.97 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.