Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Simulating Pump-Probe Photoelectron and Absorption Spectroscopy on the Attosecond Timescale with Time-Dependent Density Functional Theory
Author: De Giovannini, U
Brunetto, G
Castro, A
Walkenhorst, J
Rubio, A
Abstract: Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pumpprobe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems.
Subject: ab initio calculations
attosecond dynamics
laser spectroscopy
single-molecule studies
time-resolved spectroscopy
Country: Alemanha
Editor: Wiley-v C H Verlag Gmbh
Citation: Chemphyschem. Wiley-v C H Verlag Gmbh, v. 14, n. 7, n. 1363, n. 1376, 2013.
Rights: fechado
Identifier DOI: 10.1002/cphc.201201007
Date Issue: 2013
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.