Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/73572
Type: Artigo de periódico
Title: THE ISOMERS OF IONIZED DIMETHYL-SULFOXIDE (C2H6OS+.) AND THEIR CH3OS+ FRAGMENTS - AN AB-INITIO AND MULTIPLE-STAGE MASS-SPECTROMETRIC (MS(N)) STUDY
Author: GOZZO, FC
EBERLIN, MN
Abstract: The relative stabilities, isomerizations and dissociations of ionized dimethyl sulfoxide (DMSO), its three C2H6OS+. isomers and of all their 14 conceivable CH3OS+ fragments (1-14), have been investigated by ab initio calculations at the MP2/6-31G(d,p)//6-31G(d,p) + ZPE and G2 levels of theory, and by multiple-stage two- and three-dimensional mass spectrometry performed in a pentaquadrupole instrument. The ab initio relative energies of the isomers, their connecting transition states, and their dissociation thresholds were used to elaborate potential energy surface diagrams that precisely corroborate and unify several previously divergent experimental observations on these systems. The most kinetically favorable isomerization of (CH3)(2)-S=O-+. (I) to its aci-form CH2=S(OH)-CH3+. (II) displays a transition state considerably lower in energy than the threshold for its direct dissociation by CH3. loss. Therefore, low-energy, long-lived metastable ions I are predicted to isomerize to II, and to dissociate in turn to CH2=S+-OH (2) upon CH3. loss. Ions I excited a few electronvolts above the threshold are, on the other hand, predicted to dissociate directly to CH3-S+-O (1). Isomerization of I to the most stable C2H6OS+. isomers, that is 1, 2, (H-CS ... OH2)(+) (3), (CH2)-C-+-S(=O)H (4), 5, HC(=SH)OH+ (9), CH2-O-SH+ (10), CH2+-O-SH (11), and (H-CO ... SH2)(+) (14), were found as true minima on the RHF/6-31G(d,p) potential-energy surface, and some of their isomerization barriers and dissociation thresholds were estimated. Tandem and multiple-stage (MS(3)) mass spectrometric experiments show that non-dissociating DMSO(+.) ions produce, upon collision-induced dissociation (CID), a mixture of approximately 40% of 1 and 60% of 2, whereas the CID chemistry of 1 and 2 is affected considerably by the collision energies employed. Both the experimental and theoretical results on 1 and 2 allow a detailed interpretation of their complex dissociation chemistry, which clarifies the nature of most of their indirect fragments. Such fragments are proposed to be formed via the common isomerization/dissociation sequences 1 --> 2 --> 9 reversible arrow 3 --> HCS+ (m/z 45) + H2O, and 1 --> 2 --> [7, HO-CH2-S+] --> S+CH2OH+ (m/z 31). These processes are favored at lower collision energies, whereas direct dissociation of 1 to CH3+ (m/z 15) and SO+. (m/z 48), and of 2 to CH2S+. (m/z 46) occurs to greater extents at higher collision energies.
Country: Inglaterra
Editor: John Wiley & Sons Ltd
Rights: fechado
Identifier DOI: 10.1002/jms.1190301106
Date Issue: 1995
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOSA1995TF18500005.pdf904.58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.