Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks
Author: Pedronette, DCG
Penatti, OAB
Torres, RD
Abstract: In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved.
Subject: Content-based image retrieval
Rank aggregation
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/j.imavis.2013.12.009
Date Issue: 2014
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.