Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods
Author: Bocanegra, S
Campos, FF
Oliveira, ARL
Abstract: We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the problem is approached, the linear systems becomes highly ill-conditioned and the method changes to phase II. In this phase a preconditioner based on the LU factorization is found to work better near a solution of the LP problem. The numerical experiments reveal that the iterative hybrid approach works better than Cholesky factorization on some classes of large-scale problems.
Subject: interior point methods
ill-conditioned systems
Country: EUA
Editor: Springer
Rights: fechado
Identifier DOI: 10.1007/s10589-006-9009-5
Date Issue: 2007
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000246107300002.pdf331.7 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.