Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/71987
Type: Artigo de periódico
Title: Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
Author: Birgin, EG
Martinez, JM
Martinez, L
Rocha, GB
Abstract: Large-scale electronic structure calculations usually involve huge nonlinear eigenvalue problems. A method for solving these problems without employing expensive eigenvalue decompositions of the Fock matrix is presented in this work. The sparsity of the input and output matrices is preserved at every iteration, and the memory required by the algorithm scales linearly with the number of atoms of the system. The algorithm is based on a projected gradient iteration applied to the constraint fulfillment problem. The computer time required by the algorithm also scales approximately linearly with the number of atoms (or non-null elements of the matrices), and the algorithm is faster than standard implementations of modern eigenvalue decomposition methods for sparse matrices containing more than 50 000 non-null elements. The new method reproduces the sequence of semiempirical SCF iterations obtained by standard eigenvalue decomposition algorithms to good precision.
Country: EUA
Editor: Amer Chemical Soc
Rights: fechado
Identifier DOI: 10.1021/ct3009683
Date Issue: 2013
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.