Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Solving simple quaternionic differential equations
Author: De Leo, S
Ducati, GC
Abstract: The renewed interest in investigating quaternionic quantum mechanics, in particular tunneling effects, and the recent results on quaternionic differential operators motivate the study of resolution methods for quaternionic differential equations. In this paper, by using the real matrix representation of left/right acting quaternionic operators, we prove existence and uniqueness for quaternionic initial value problems, discuss the reduction of order for quaternionic homogeneous differential equations and extend to the noncommutative case the method of variation of parameters. We also show that the standard Wronskian cannot uniquely be extended to the quaternionic case. Nevertheless, the absolute value of the complex Wronskian admits a noncommutative extension for quaternionic functions of one real variable. Linear dependence and independence of solutions of homogeneous (right) H-linear differential equations is then related to this new functional. Our discussion is, for simplicity, presented for quaternionic second order differential equations. This involves no loss of generality. Definitions and results can be readily extended to the n-order case. (C) 2003 American Institute of Physics.
Country: EUA
Editor: Amer Inst Physics
Citation: Journal Of Mathematical Physics. Amer Inst Physics, v. 44, n. 5, n. 2224, n. 2233, 2003.
Rights: aberto
Identifier DOI: 10.1063/1.1563735
Date Issue: 2003
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000182400100022.pdf299.92 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.