Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/71396
Type: Artigo de periódico
Title: Self-organized inorganic-organic hybrids induced by silylating agents with phyllosilicate-like structure and the influence of the adsorption of cations
Author: Da Fonseca, MG
Barone, JS
Airoldi, C
Abstract: Two analogous inorganic-organic hybrids with a phyllosilicate-like structure SILMg1 and SILMg2, containing 3-aminopropyl- and N-propylethylenediaminetrimethoxysilane were synthesized through a sol-gel process. These hybrids adsorbed divalent cations of cobalt, nickel, copper, and zinc from aqueous solution to give the effectiveness of adsorption capacities in the sequence Cu2+ > Zn2+ > Ni2+ > Co2+. SILMg1 has a higher capacity of adsorption than SILMg2. Elemental analysis, X-ray diffractometry, thermal analysis, infrared and nuclear magnetic resonance spectroscopies, and energy dispersive system microscopy characterized all hybrids. The proposed adsorption mechanism involves dissolution of the precursor matrix, formation of a phyllosilicate around the adsorbed ion, and a complexation of the cation by the amino-pendant groups in the interlayer. These new phyllosilicates are more crystalline than the original hybrids. The adsorption of Co2+ increases the interlayer distance to maximum values of 1.81 and 2.24 Angstrom for SILMg1 and SILMg2, respectively. Thermal analysis data showed a decrease of thermal stability with cation adsorption. Si-O-Si groups were detected by infrared spectroscopy in all hybrids and a band at 1384 cm(-1) was assigned to the nitrate counter anion, which indicates the participation of this ion in the sphere of coordination of the interlayer complexes. The photomicrographs obtained by scanning electron microscopy showed the organized distribution of the sheet structure for these synthesized phyllosilicates.
Subject: adsorption
aminated surface
complexes
ion-exchange
modified phyllosilicate
Country: EUA
Editor: Clay Minerals Society
Rights: embargo
Identifier DOI: 10.1346/CCMN.2000.0480605
Date Issue: 2000
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000166162200005.pdf1.35 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.