Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes
Author: Paez, CJ
Schulz, PA
Wilson, NR
Romer, RA
Abstract: In this work, we numerically calculate the electric current through three kinds of DNA sequences (telomeric, lambda-DNA and p53-DNA) described by different heuristic models. A bias voltage is applied between two zigzag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. Calculation of the current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of length and sequence initialization at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNAs, such as lambda-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current.
Country: Inglaterra
Editor: Iop Publishing Ltd
Rights: aberto
Identifier DOI: 10.1088/1367-2630/14/9/093049
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000309393400007.pdf1.27 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.