Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Polynomial identities for graded tensor products of algebras
Author: Freitas, JA
Koshlukov, P
Abstract: Let K be a field, chat K = 0. We study the polynomial identities satisfied by Z(2)-graded tensor products of T-prime algebras. Regev and Seeman proved that in a series of cases such tensor products are PI equivalent to T-prime algebras; they conjectured that this is always the case. We deal here with the remaining cases and thus confirm Regev and Seeman's conjecture. For some "small" algebras we can remove the restriction on the characteristic of the base field, and we show that the behaviour of the corresponding graded tensor products is quite similar to that for the usual (ungraded) tensor products. Finally we consider beta-graded tenser products (also called commutation factors) and their identities. We show that Regev's A circle times B theorem holds for beta-graded tensor products whenever the gradings are by finite abelian groups. Furthermore we study the PI equivalence of p-graded tensor products Of T-prime algebras. (C) 2008 Elsevier Inc. All rights reserved.
Subject: Graded identities
Graded tensor product
Graded T-ideal
T-prime algebras
Commutation factors
Country: EUA
Editor: Academic Press Inc Elsevier Science
Citation: Journal Of Algebra. Academic Press Inc Elsevier Science, v. 321, n. 2, n. 667, n. 681, 2009.
Rights: fechado
Identifier DOI: 10.1016/j.jalgebra.2008.09.031
Date Issue: 2009
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000262552300017.pdf275.51 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.