Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/69623
Type: Artigo
Title: Homological finiteness properties of Lie algebras
Author: Groves, J.R.J.
Kochloukova, D.H.
Abstract: We apply the main ideas behind the group theoretic methods developed in [P.H. Kropholler, Bull. London Math. Soc. 25 (1993) 558-566; J. Pure Appl. Math. 90 (1993) 55-67] to study Lie algebras of type FPinfinity. We show that every soluble Lie algebra of type FPinfinity is finite dimensional. Some refinements of this result, when the algebra is abelian-by-finite dimensional and only type FPm is assumed, are obtained. It is also shown, using the complete cohomology of Vogel and Mislin, that for a wide class of Lie algebras, including all countable soluble ones, FPinfinity implies finite cohomological dimension. (C) 2004 Published by Elsevier Inc.
We apply the main ideas behind the group theoretic methods developed in [P.H. Kropholler, Bull. London Math. Soc. 25 (1993) 558-566; J. Pure Appl. Math. 90 (1993) 55-67] to study Lie algebras of type FPinfinity. We show that every soluble Lie algebra of t
Subject: Álgebra homológica
Cohomologia (Matemática)
Álgebra de Lie
Isomorfismos (Matemática)
Módulos (Álgebra)
Country: Estados Unidos
Editor: Elsevier
Citation: Journal Of Algebra. Academic Press Inc Elsevier Science, v. 279, n. 2, n. 840, n. 849, 2004.
Rights: Aberto
Identifier DOI: 10.1016/j.jalgebra.2004.02.014
Address: https://www.sciencedirect.com/science/article/pii/S0021869304001267
Date Issue: 2004
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000223280600021.pdf277.3 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.