Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: H-2 and H-infinity robust filtering for discrete-time linear systems
Author: Geromel, JC
Bernussou, J
Garcia, G
De Oliveira, MC
Abstract: This paper investigates robust filtering design problems in H-2 and H-infinity spaces for discrete-time systems subjected to parameter uncertainty which is assumed to belong to a convex bounded polyhedral domain. It is shown that, by a suitable change of variables, both design problems can be converted into convex programming problems written in terms of linear matrix inequalities (LMI). The results generalize the ones available in the literature to date in several directions. First, all system matrices can be corrupted by parameter uncertainty and the admissible uncertainty may be structured. Then, assuming the order of the uncertain system is known, the optimal guaranteed performance H-2 and H-infinity filters are proven to be of the same order as the order of the system. Comparisons with robust filters for systems subjected to norm-bounded uncertainty are provided in both theoretical and practical settings. In particular, it is shown that under the same assumptions the results here are generally better as far as the minimization of a guaranteed cost expressed in terms of H-2 or H-infinity norms is considered. Some numerical examples illustrate the theoretical results.
Subject: linear systems
discrete-time systems
parameter uncertainty
linear matrix inequalities
Country: EUA
Editor: Siam Publications
Citation: Siam Journal On Control And Optimization. Siam Publications, v. 38, n. 5, n. 1353, n. 1368, 2000.
Rights: aberto
Identifier DOI: 10.1137/S0363012997327379
Date Issue: 2000
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000087639100003.pdf190.78 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.