Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: On the semistability of instanton sheaves over certain projective varieties
Author: Jardim, M
Miro-Roig, RM
Abstract: We show that instanton bundles of rank r <= 2n - 1, defined as the cohomology of certain linear monads, on an n-dimensional projective variety with cyclic Picard group are semistable in the sense of Mumford-Takemoto. Furthermore, we show that rank r <= n linear bundles with nonzero first Chern class over such varieties are stable. We also show that these bounds are sharp.
Subject: monads
semistable sheaves
Country: EUA
Editor: Taylor & Francis Inc
Citation: Communications In Algebra. Taylor & Francis Inc, v. 36, n. 1, n. 288, n. 298, 2008.
Rights: fechado
Identifier DOI: 10.1080/00927870701665503
Date Issue: 2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000252928600023.pdf114.32 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.