Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/68727
Type: Artigo de periódico
Title: On the norm of the Fourier-Gegenbauer projection in weighted L-p spaces
Author: Levesley, J
Kushpel, AK
Abstract: We extend the results of Pollard [4] and give asymptotic estimates for the norm of the Fourier-Gegenbauer projection operator in the appropriate weighted L-p space. In particular, we settle the question of whether the projection is bounded for p = (2 lambda + 1)/lambda and p = (2 lambda + 1)/(lambda + 1), where lambda is the index for the family of Gegenbauer polynomials under consideration.
Subject: Fourier-Gegenbauer projection
Lebesgue constants
Country: EUA
Editor: Springer Verlag
Rights: fechado
Identifier DOI: 10.1007/s003659900113
Date Issue: 1999
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000080408100004.pdf68.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.