Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/68725
Type: Artigo de periódico
Title: On the non-linear dynamic behavior of elastohydrodynamic lubricated point contact
Author: Nonato, F
Cavalca, KL
Abstract: The complex dynamic concepts of mechanical systems are regarded each day as new barriers to be overcome. One of the most complex systems, despite its common construction design, is the rolling element bearings. The interactive dynamic interfaces of such bearings are normally disregarded by engineering analysis on the day to day basis due to its complexities. This paper intends to propose a new approach to the characterization of the elastohydrodynamic lubricated point contacts on such components, in order to fully depict its non-linear dynamic behavior, avoiding the use of rough hypothesis on a systemic procedure. A multi-level method was used to solve the coupled lubrication-deformation problem, alongside a Newmark-beta integrator of the motion equation for the contact system. A range of dynamically similar contacts were evaluated, so as to characterize its nonlinear dynamic behavior. A least-squares method was applied to the multi-level algorithm results, fitting the displacements-force relation to a linear and also to a third order polynomial stiffness. The fitting results were compared, clearly showing the nonlinear behavior of such contacts. Also, the oil film damping was regarded as viscous, leading to good overall response. Some peculiarities of the proposed adjust method are also considered. (C) 2010 Elsevier Ltd. All rights reserved.
Country: Inglaterra
Editor: Academic Press Ltd- Elsevier Science Ltd
Rights: fechado
Identifier DOI: 10.1016/j.jsv.2010.05.014
Date Issue: 2010
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000280929700007.pdf2.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.