Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: On the local well-posedness for some systems of coupled KdV equations
Author: Alvarez-Samaniego, B
Carvajal, X
Abstract: Using the theory developed by Kenig, Ponce, and Vega, we prove that the Hirota-Satsuma system is locally well-posed in Sobolev spaces H-s(R) x H-s(R) for 3/4 s <= 1. We introduce some Bourgain-type spaces X-s,b(a) for a not equal 0, s, b is an element of R to obtain local well-posedness for the Gear-Grimshaw system in H-s (R) x H-s (R) for s > -3/4, by establishing new mixed-bilinear estimates involving the two Bourgain-type spaces X-s,b(-alpha-) and X-s,b(-alpha+) adapted to partial derivative(t) + alpha(-)partial derivative(3)(x) and alpha + partial derivative(3)(x) respectively, where vertical bar alpha+vertical bar=vertical bar alpha(-)vertical bar not equal 0. (C) 2007 Elsevier Ltd. All rights reserved.
Subject: Hirota-Satsuma system
Gear-Grimshaw system
KdV equation
Country: Inglaterra
Editor: Pergamon-elsevier Science Ltd
Citation: Nonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 69, n. 2, n. 692, n. 715, 2008.
Rights: fechado
Identifier DOI: 10.1016/
Date Issue: 2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000256990900026.pdf476.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.