Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: On the internal distance in the interlacement set
Author: Cerny, J
Popov, S
Abstract: We prove a shape theorem for the internal (graph) distance on the interlacement set I-u of the random interlacement model on Z(d), d >= 3. We provide large deviation estimates for the internal distance of distant points in this set, and use these estimates to study the internal distance on the range of a simple random walk on a discrete torus.
Subject: Random interlacement
Internal distance
Shape theorem
Simple random walk
Country: EUA
Editor: Univ Washington, Dept Mathematics
Citation: Electronic Journal Of Probability. Univ Washington, Dept Mathematics, v. 17, n. 1, n. 25, 2012.
Rights: aberto
Identifier DOI: 10.1214/EJP.v17-1936
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000304033700001.pdf423.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.