Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/68651
Type: Artigo de periódico
Title: On the eigenvalues of the twisted Dirac operator
Author: Jardim, M
Leao, RF
Abstract: Given a compact Riemannian spin manifold whose untwisted Dirac operator has trivial kernel, we find a family of connections del(At) for t is an element of [0,1] on a trivial vector bundle of rank no larger than dim M+1, such that the first eigenvalue of the twisted Dirac operator D(At) is nonzero for t not equal 1 and vanishes for t = 1. However, if one restricts the class of twisting connections considered, then nonzero lower bounds do exist. We illustrate this fact by establishing a nonzero lower bound for the Dirac operator twisted by Hermitian-Einstein connections over Riemann surfaces. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3133944]
Country: EUA
Editor: Amer Inst Physics
Rights: aberto
Identifier DOI: 10.1063/1.3133944
Date Issue: 2009
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000267599900031.pdf399.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.