Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/68365
Type: Artigo de periódico
Title: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications
Author: Afonso, CRM
Ferrandini, PL
Ramirez, AJ
Caram, R
Abstract: beta-Ti alloys are highly attractive metallic materials for biomedical applications due to their high specific strength, high corrosion resistance and excellent biocompatibility, including low elastic modulus. This work aims to clarify the hardening mechanism of a beta-Ti-Nb-Zr-Ta alloy using different characterization techniques. Ingots (50 g) of Ti-35Nb-7Zr-5Ta (wt.%) alloy were arc furnace melted in an Ar((g)) atmosphere, homogenized, hot rolled, solubilized and finally aged at several temperatures from 200 to 700 degrees C for 4 h. Microstructure characterization was performed using X-ray diffraction, optical microscopy, scanning and high resolution transmission electron microscopy (HR-TEM). The 4 h aging showed that the highest hardness values were found when aged at 400 degrees C and the HR-TEM images confirmed splitting of spots on the Fourier space map, which indicated the presence of a coherent interface between separated phases (beta and beta') and explains the hardening mechanism of the alloy. Through geometric phase analysis analysis, using the HR-TEM image, the localized strain map showed 5-10 nm domains of the beta and beta' phases. The combination of suitable values of yield strength, hardness and low Young's modulus makes Ti-35Nb-7Zr-5Ta alloy suitable for medical applications as a metallic orthopedic implant. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Subject: beta-Ti alloy
Hardening mechanism
Phase separation
Aging
Country: Inglaterra
Editor: Elsevier Sci Ltd
Rights: fechado
Identifier DOI: 10.1016/j.actbio.2009.11.010
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000276013500049.pdf495.95 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.