Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/68017
Type: Artigo de periódico
Title: Geometry, solvent, and polar effects on the relationship between calculated core-electron binding energy shifts (Delta CEBE) and Hammett substituent (sigma) constants
Author: Segala, M
Takahata, Y
Chong, DP
Abstract: According to Lindberg et al. there exists an equation Delta CEBE=kappa sigma for substituted benzene derivatives. Core-electron binding energy shift (Delta CEBE) is the difference between the CEBE of a specific carbon in monosubstituted benzene derivatives (C6H5-Z) and in benzene (C6H5-H); K is related to a reaction constant and or is the experimental Hammett substituent constant. The object of the present work is to investigate geometry, solvent, and polar effects on Lindberg's equation using theoretically calculated ACEBE. The CEBEs were calculated using DFT within the scheme Delta E-KS (PW86x-PW91c/TZP + C-rel). The geometry has only little effect on the CEBE values. A regression relation between ACEBE and 0, takes the form Delta CEBE = kappa sigma-C with K congruent to 1.17 and C congruent to 0.17. We estimated 69 sigma constants in water that have not been presented in the literature. Theoretical resonance (sigma(R)) and inductive (sigma(I)) effects were calculated using Taft equations. ACEBE (R) and ACEBE (1) effects on ACEBE were also calculated using Taft-like equations. The quality of the correlation to the resonance is better than that to the inductive effect, in water. The regression quality in aqueous organic solvent is poorer than in water in both Lindberg and Taft equations. The solvent effect is greater on the resonance than on the inductive effect. (c) 2006 Elsevier B.V. All rights reserved.
Subject: CEBE shift
Hammett sigma
DFF
LFER
benzenes
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/j.theochem.2005.10.004
Date Issue: 2006
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000235255700009.pdf149.15 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.