Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/66993
Type: Artigo de periódico
Title: Finiteness conditions and PDr-group covers of PDn-complexes
Author: Hillman, JA
Kochloukova, DH
Abstract: We show that an infinite cyclic covering space M' of a PD (n) -complex M is a PD (n-1)-complex if and only if chi(M) = 0, M' is homotopy equivalent to a complex with finite [(n-1)/2]-skeleton and pi(1)(M') is finitely presentable. This is best possible in terms of minimal finiteness assumptions on the covering space. We give also a corresponding result for covering spaces M (nu) with covering group a PD (r) -group under a slightly stricter finiteness condition.
Subject: coinduced module
finiteness condition
finite domination
infinite cyclic cover
Novikov ring
Poincare duality
Country: EUA
Editor: Springer
Rights: fechado
Identifier DOI: 10.1007/s00209-006-0058-3
Date Issue: 2007
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000244338200003.pdf241.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.