Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/66521
Type: Artigo de periódico
Title: Extended Grassmann and Clifford algebras
Author: da Rocha, R
Vaz, J
Abstract: This paper is intended to investigate Grassmann and Clifford algebras over Peano spaces, introducing their respective associated extended algebras, and to explore these concepts also from the counterspace viewpoint. The presented formalism explains how the concept of chirality steins from the bracket, as defined by Rota et all [1]. The exterior (regressive) algebra is shown to share the exterior (progressive) algebra in the direct sum of chiral and achiral subspaces. The duality between scalars and volume elements, respectively under the progressive and the regressive products is shown to have chirality, in the case when the dimension n of the Peano space is even. In other words, the counterspace volume element is shown to be a scalar or a pseudoscalar, depending on the dimension of the vector space to be respectively odd or even. The de Rham cochain associated with the differential operator is constituted by a sequence of exterior algebra homogeneous subspaces subsequently chiral and achiral. Thus we prove that the exterior algebra over the space and the exterior algebra constructed on the counterspace are only pseudoduals each other, if we introduce chirality. The extended Clifford algebra is introduced in the light of the periodicity theorem of Clifford algebras context, wherein the Clifford and extended Clifford algebras Cl-p,Cl-q can be embedded in Cl-p+1,Cl-q+1, which is shown to be exactly the extended Clifford algebra. We present the essential character of the Rota's bracket, relating it to the formalism exposed by Conradt [25], introducing the regressive product and subsequently the counterspace. Clifford algebras are constructed over the counterspace, and the duality between progressive and regressive products is presented using the dual Hodge star operator. The differential and codifferential operators are also defined for the extended exterior algebras from the regressive product viewpoint, and it is shown they uniquely tumble right out progressive and regressive exterior products of 1-forms.
Subject: Grassmann algebra
Clifford algebra
chirality
duality
counterspace
Country: Suíça
Editor: Birkhauser Verlag Ag
Rights: fechado
Identifier DOI: 10.1007/s00006-006-0006-7
Date Issue: 2006
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000246538400002.pdf577.98 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.