Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/66422
Type: Artigo de periódico
Title: Exploiting pairwise recommendation and clustering strategies for image re-ranking
Author: Pedronette, DCG
Torres, RD
Abstract: In Content-based Image Retrieval (CBIR) systems, accurately ranking collection images is of great relevance. Users are interested in the returned images placed at the first positions, which usually are the most relevant ones. Commonly, image content descriptors are used to compute ranked lists in CBIR systems. In general, these systems perform only pairwise image analysis, that is, compute similarity measures considering only pairs of images, ignoring the rich information encoded in the relations among several images. This paper presents a novel re-ranking approach used to improve the effectiveness of CBIR tasks by exploring relations among images. In our approach, a recommendation-based strategy is combined with a clustering method. Both exploit contextual information encoded in ranked lists computed by CBIR systems. We conduct several experiments to evaluate the proposed method. Our experiments consider shape, color, and texture descriptors and comparisons with other post-processing methods. Experimental results demonstrate the effectiveness of our method. (C) 2012 Elsevier Inc. All rights reserved.
Subject: Content-based image retrieval
Re-ranking
Rank aggregation
Recommendation
Country: EUA
Editor: Elsevier Science Inc
Rights: fechado
Identifier DOI: 10.1016/j.ins.2012.04.032
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000305727400002.pdf1.65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.