Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Evidence that synchrotron emission from nonthermal electrons produces the increasing submillimeter spectral component in solar flares
Author: Silva, AVR
Share, GH
Murphy, RJ
Costa, JER
de Castro, CGG
Raulin, JP
Kaufmann, P
Abstract: We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of similar to 50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2x10(5) more positrons than what is inferred from X-ray and gamma-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and gamma rays. We find that the same 5x10(35) electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.
Subject: sun : solar flares
sun : synchrotron radiation
sun : positrons
Country: Holanda
Editor: Springer
Citation: Solar Physics. Springer, v. 245, n. 2, n. 311, n. 326, 2007.
Rights: fechado
Identifier DOI: 10.1007/s11207-007-9044-0
Date Issue: 2007
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000251490400007.pdf774.65 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.