Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Author: FEDLER, CB
Abstract: Two ethanol production models were developed as a function of microbial growth, metabolism, and the chemical and physical processes occurring in a fermentation system. The first equation, which considered a monosaccharide as the substrate, fit measured data well (R2 > 0.98). This function considered lag time through a microbial population increase component and fit all physical boundary conditions. Because of the theoretical basis for the equation and the excellent fit to measured data, it was concluded that the model fully explained the fermentative conversion of a monosaccharide to ethanol. The upper boundary condition for the monosaccharide substrate equation was modified to include effects of the chemical and physical processes that convert starch and/or cellulose to a sugar. This starch-based equation also closely fit measured data reported in the literature. The four coefficients in the general starch equation were related to carbohydrate concentration, percent saccharification, and temperature. A physical explanation was given for each coefficient. Independent verification of the second model using 18 data sets reported in the literature predicted measured results with an R2 value of 0.89 and was highly significant (alpha = 0.001).
Editor: Amer Soc Agr Engineers
Citation: Transactions Of The Asabe. Amer Soc Agr Engineers, v. 34, n. 3, n. 977, n. 982, 1991.
Rights: aberto
Date Issue: 1991
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOSA1991GD09800040.pdf984.03 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.