Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Entropically driven partitioning of ethylene oxide oligomers and polymers in aqueous/organic biphasic systems
Author: Spitzer, M
Sabadini, E
Loh, W
Abstract: Partitioning of ethylene oxide oligomers and polymers (PEO) in biphasic systems of water and chloroform or dichloromethane favors transfer to the organic phase as the molecular weight increases. For systems containing chlorobenzene, partitioning into the aqueous phase is always predominant. Calorimetric determination of the enthalpies of transfer for PEO from aqueous to organic phases reveals an endothermic process for all of the systems investigated, which was ascribed to the replacement of a more energetically favored PEO solvation in water for that in the organic phase. These results indicate that spontaneous PEO transfer from water to an organic phase is driven by an entropy increase. The number of water molecules transferred to the organic phase with PEO was determined to be ca. 0.08 water molecules per EO unit, smaller than hydration numbers reported in aqueous solutions. All of these findings lead to a picture where PEO may be extracted from water to an organic phase as long as the solvation by the organic solvent is relatively strong as compared to water. The displacement of water causes an entropy increase, which drives the transfer process. Chloroform and dichloromethane are suitable solvents for PEO extraction probably because of their hydrogen bond-donating capability.
Country: EUA
Editor: Amer Chemical Soc
Citation: Journal Of Physical Chemistry B. Amer Chemical Soc, v. 106, n. 48, n. 12448, n. 12452, 2002.
Rights: fechado
Identifier DOI: 10.1021/jp0255942
Date Issue: 2002
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000179618200012.pdf50.93 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.